Hole-Filling by Rank Sparsity Tensor Decomposition for Medical Imaging

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rank-Sparsity Incoherence for Matrix Decomposition

Suppose we are given a matrix that is formed by adding an unknown sparse matrix to an unknown low-rank matrix. Our goal is to decompose the given matrix into its sparse and low-rank components. Such a problem arises in a number of applications in model and system identification, and is NP-hard in general. In this paper we consider a convex optimization formulation to splitting the specified mat...

متن کامل

Spectral Decomposition of a 4-rank Tensor and Applications to Generalised Diffusion Tensor Imaging

Introduction: In 2003 Ozarslan et al introduced Generalised DTI, and showed how the data from a diffusion MRI experiment can be described by a higher rank tensor [1]. In 2005 the same authors proposed two generalised anisotropy metrics that can be calculated from any n-rank tensor [2]. The normalisation of these metrics is achieved by using a scaling function, with parameters that can be change...

متن کامل

Face Recognition by Discriminative Orthogonal Rank-one Tensor Decomposition

Discriminative subspace analysis has been a popular approach to face recognition. Most of the previous work such as Eigen-faces (Turk & Pentlend, 1991), LDA (Belhumeur et al., 1997), Laplacian faces (He et al., 2005a), as well as a variety of tensor based subspace analysis methods (He et al., 2005b; Chen et al., 2005; Xu et al., 2006; Hua et al., 2007), can all be unified in the graph embedding...

متن کامل

Tensor rank-one decomposition of probability tables

We propose a new additive decomposition of probability tables tensor rank-one decomposition. The basic idea is to decompose a probability table into a series of tables, such that the table that is the sum of the series is equal to the original table. Each table in the series has the same domain as the original table but can be expressed as a product of one-dimensional tables. Entries in tables ...

متن کامل

Sparse and Low-Rank Tensor Decomposition

Motivated by the problem of robust factorization of a low-rank tensor, we study the question of sparse and low-rank tensor decomposition. We present an efficient computational algorithm that modifies Leurgans’ algoirthm for tensor factorization. Our method relies on a reduction of the problem to sparse and low-rank matrix decomposition via the notion of tensor contraction. We use well-understoo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEICE Transactions on Information and Systems

سال: 2011

ISSN: 0916-8532,1745-1361

DOI: 10.1587/transinf.e94.d.396